Gaps in the lattices of topological group topologies

Zhiqiang Xiao Taizhou University

Joint work with:

Wei He, Dekui Peng, Mikhail Tkachenko

YGGT X Newcastle, July 26, 2021

a miller

 \mathbf{A} \mathbf{B} \mathbf{B} \mathbf{A} \mathbf{B} \mathbf{B} \mathbf{A}

 Ω

- [Predecessors of locally compact abelian group](#page-4-0) (G, τ) in $\mathcal{PG}(G)$ and $\mathcal{G}(G)$ $\mathcal{G}(G)$ $\mathcal{G}(G)$
- [successors of locally compact abelian group](#page-13-0) (G, τ) in $\mathcal{PG}(G)$ and $\mathcal{G}(G)$ $\mathcal{G}(G)$ $\mathcal{G}(G)$

4 17 18

 $4 \oplus 14 \oplus 14$

 Ω

The study of lattices of topologies over a set was initiated by Birkhoff around 1930s. From then on, there are a lot of study in this direction. Let $\mathcal{L}(X) = (\mathcal{T}(X), \wedge, \vee)$ be the lattice of all topologies on a set X, where the binary operations ∨ and ∧ are called the *join* and *meet*, respectively. As usual, the join $\tau \vee \sigma$ of topologies $\tau, \sigma \in \mathcal{T}(X)$ is the coarsest topology λ on *X* satisfying $\tau \subset \lambda$ and $\sigma \subset \lambda$. Similarly, $\tau \wedge \sigma$ is the finest topology λ^* on X satisfying $\lambda^* \subset \tau$ and $\lambda^* \subset \sigma$. It is known and easy to verify that the lattice $(\mathcal{T}(X), \wedge, \vee)$ is *complete*, and family $\mathcal{L}_1(X)$ of T_1 topologies on *X* forms a *sublattice* of $\mathcal{T}(X)$.

Theorem 1 (Birkhoff,1935)

For every set X, $\mathcal{L}(X)(\mathcal{L}_1(X))$ *is a complete lattice.*

 Ω

(ロトイ部)→(差)→(差)→

Our main concern is to study the lattices of (para)topological group topologies on a group *G*. From now on, we will fix

 $X = \{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} : a > 0, a, b \in \mathbb{R} \} \leq GL(2, \mathbb{R}).$

 $G(G)$ of topological group topologies on *G* forms a *sublattice* of $\mathcal{PG}(G)$. Let $(\mathcal{PG}(G), \wedge, \vee)$ be the lattice of all paratopological group topologies on a group *G*, where the binary operations ∨ and ∧ are called the *join* and *meet*, respectively. As usual, the join $\tau \vee \sigma$ of topologies $\tau, \sigma \in \mathcal{PG}(G)$ is the coarsest paratopological group topology λ on G satisfying $\tau \subset \lambda$ and $\sigma \subset \lambda$. Similarly, $\tau \wedge \sigma$ is the finest paratopological group topology λ^* on G satisfying $\lambda^* \subset \tau$ and $\lambda^* \subset \sigma.$ It is known and easy to verify that the lattice $(PG(G), \wedge, \vee)$ is *complete*, and family

 Ω

 $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

Definition 2

Let *G* be an abstract group and *S* be a subfamily of the lattice $PG(G)$ of all paratopological group topologies on *G*. A pair of elements $\tau, \sigma \in \mathcal{S}$ with $\sigma \subset \tau$ is a *gap* in S if no element $\lambda \in S$ satisfies $\sigma \subset \lambda \subset \tau$. If $\{\sigma, \tau\}$ is a gap in S, and $\sigma \subset \tau$, then τ is called a *successor* of σ in S and σ is a *predecessor* of τ in S.

Let τ be a nondiscrete (para)topological group topology on the additive group of integers, $\mathbb Z$. By the Kuratowski–Zorn lemma, $\mathcal T$ is contained in a *maximal* (by inclusion) nondiscrete (para)topological group topology on ℤ, say, \mathcal{T}^* . In what follows the term *maximal* topology will always refer to a non-discrete topology. Therefore $\{ \mathcal{T}^*, \tau_d \}$ is a *gap* in $\mathcal{PG}(\mathbb{Z})$.

 Ω

We now use maximal topologies to define predecessors of τ_u in $\mathcal{G}(\mathbb{R})$ and $PG(\mathbb{R})$.

Example 3 (He–Peng–Tkachenko–Xiao, 2019)

Let \mathcal{T}^* be a maximal (para)topological group topology on $\mathbb Z$ and $\mathcal{T}^*(0)$ be the family of all sets $U \in \mathcal{T}^*$ with $0 \in U$. Then the family

$$
\mathcal{B} = \{U + (-\varepsilon, \varepsilon) : U \in \mathcal{T}^*(0), \ \varepsilon > 0\}
$$

is a local base at zero for a (para)topological group topology τ on $\mathbb R$ and τ is a predecessor of τ_u in $\mathcal{G}(\mathbb{R})$ (respectively, in $\mathcal{PG}(\mathbb{R})$).

 Ω

イロト イ押 トイラト イラト

Theorem 4 (He–Peng–Tkachenko–Xiao, 2019)

Let σ *be a predecessor of* τ_u *in* $\mathcal{G}(\mathbb{R})$ *(in* $\mathcal{PG}(\mathbb{R})$)*. Then* σ \mathbb{Z} *is a maximal (para)topological group topology on* Z*.*

Combining Example [3](#page-5-0) and Theorem [4](#page-6-0) we obtain a complete description of the predecessors of τ_u in the lattices $\mathcal{G}(\mathbb{R})$ and $\mathcal{PG}(\mathbb{R})$. In fact, the operations on topologies described in Example [3](#page-5-0) and Theorem [4](#page-6-0) are mutually inverse. In other words, if σ is a predecessor of τ_u in $\mathcal{G}(\mathbb{R})$ or $\mathcal{PG}(\mathbb{R})$ and $\mathcal{T} = \sigma \mathcal{Z}$, then $\mathcal T$ is a maximal $(para)$ topological group topology on $\mathbb Z$ and the family ${U + (-\varepsilon, \varepsilon) : 0 \in U \in \mathcal{T}, \varepsilon > 0}$ is a local base at zero for the topology σ.

 Ω

Let us show that all predecessors of the topology τ_u 'inherit' the Hausdorff separation property, independently of whether they are taken in $\mathcal{G}(\mathbb{R})$ or in $\mathcal{PG}(\mathbb{R})$.

Proposition 1 (He–Peng–Tkachenko–Xiao, 2019)

If σ *is a predecessor of* τ_u *either in* $\mathcal{G}(\mathbb{R})$ *or* $\mathcal{PG}(\mathbb{R})$ *, then the topology* σ *is Hausdorff.*

 Ω

K ロ ト K 伺 ト K ヨ ト K

Theorem 5

Let (*G*, *τ*) *be a Hausdorff topological abelian group. Then all predecessors of* τ *in* $\mathcal{G}(G)$ *(if exist) are Hausdorff if and only if the group G is torsion free.*

Let us recall that a Hausdorff topological group *G* is *minimal* if it does not admit a strictly coarser Hausdorff topological group topology. Theorem [5](#page-8-0) implies the following curious fact about minimal topological abelian groups.

Corollary 6

Let (G, τ) be a minimal topological abelian group. If G is torsion free, *then* τ *has no predecessors in* $\mathcal{G}(G)$ *.*

 Ω

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1$

In [\[4\]](#page-17-0), we have proved that a minimal abelian torsion-free group *G* have no predecessors in $G(G)$. But we obtain the opposite result for the group *X*.

Example 7

Let U be the family of subsets of X of the form

$$
W_n = \{ \left(\begin{smallmatrix} a & b \\ 0 & 1 \end{smallmatrix} \right) \in X : a \in (1 - 1/n, 1 + 1/n), \ b \in \mathbb{R}, \},
$$

where $n \in \mathbb{N}^+$. Then there exists a topological group topology $\mathcal{T}_\mathcal{U}$ on X with local base U at the identity *I* of *X*. The topology \mathcal{T}_U is strictly coarser than the Euclidean topology of the group X and \mathcal{T}_U is the unique predecessor of τ_X in $\mathcal{G}(X)$.

 Ω

イロト イ押 トイラト イラト

Problem 8

Does every locally compact noncompact minimal Hausdorff group admit a strictly weaker (minimal) Hausdorff paratopological group topology?

Remark 1

In fact, these groups are locally compact noncompact minimal group when endowed with the discrete topology. Then the natural question as to whether every infinite non-topologizable group admits a non-discrete Hausdorff (minimal) paratopological group topology is a special case of Problem [8.](#page-10-0)

Problem 9

Does every infinite non-topologizable group admit a non-discrete Hausdorff (minimal) paratopological group topology?

 Ω

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(1,1)$ $(1,1)$

Proposition 2 (He–Peng–Tkachenko–Xiao, 2019)

Let $\{\tau_1, \tau_2\}$ *be a gap in the lattice of all (para)topological group topologies on a group G. If H is a central group of G, then either* τ_1 *H* = τ_2 *H* or $\{\tau_1$ *H*, τ_2 *H} is a gap in the lattice of (para)topological group topologies on H. Further, if* $q: G \to K$ *is a surjective homomorphism of groups and* $q(\tau_i) = \{q(U) : U \in \tau_i\}$ *for* $i = 1, 2$ *, then* ${q(\tau_1), q(\tau_2)}$ *is a gap in the lattice of (para)topological group topologies on K provided that* $q(\tau_1) \neq q(\tau_2)$ *.*

Proposition 3

The gaps in the lattice of topological group topologies over the group X is not preserved by taking normal subgroups.

 Ω

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

Theorem 10

Let N be a complete subgroup of a Hausdorff topological abelian group G with topology τ *such that the quotient group G*/*N is compact. Then there exists a one-to-one correspondence between the predecessors,* $P_2(\tau)$ *, of* τ *in* $G_2(G)$ *and the predecessors,* $P_2(\tau|N)$ *, of* $\tau|N$ *in* $G_2(N)$ *. This correspondence is the restriction mapping* $\sigma \mapsto \sigma \upharpoonright N$, where $\sigma \in \mathcal{P}_2(\tau)$.

Let $G = \mathbb{R}$ and $N = \mathbb{Z}$. The cardinality of the family $\mathcal{P}_2(\tau)$ of predecessors of τ_u in $\mathcal{G}_2(\mathbb{R})$ is equal to the cardinality of the family of all maximal topological group topologies on $\mathbb Z$. The latter number is 2^c . Since every predecessor of τ_u in $\mathcal{G}(\mathbb{R})$ is a Hausdorff topology, we have the following result.

Corollary 11

The usual interval topology τ*^u on the additive group of reals has* exactly 2^c predecessors in the lattice $\mathcal{G}(\mathbb{R})$.

Zhiqiang Xiao (TU) [Gaps in the lattices of topological group topologies](#page-0-0) July 26, 2021 13 / 19

Theorem 12 (He–Peng–Tkachenko–Xiao, 2019)

A compact Hausdorff topological group topology τ *on a divisible abelian group G* has no successors in $\mathcal{G}(G)$.

Corollary 13

For any positive integer n, the usual Euclidean topology of R ⁿ does not have successors in $G(R^n)$ *.*

Theorem 14

The Euclidean topology τ_X *on X* has no successors in $\mathcal{G}(X)$.

 Ω

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1$

Theorem 15

Let (G, τ) *be a connected LCA group. Then* τ *has no successors in* $G(G)$.

Proposition 4 (He–Peng–Tkachenko–Xiao, 2019)

For every integer $n \geq 0$ *, the pair* $\{\tau_{u}^{n+1}, \tau_{u}^{n} \times \tau_{s}\}$ *is a gap in* $\mathcal{PG}(\mathbb{R}^{n+1})$ *,* w here τ^k_u is the usual Euclidean topology on \mathbb{R}^k for $k \in \{n, n+1\}$ and $\tau_u^n \times \tau_s$ is the topology of $(\mathbb{R}^n, \tau_u^n) \times (\mathbb{R}, \tau_s)$.

 Ω

イロト イ押ト イヨト イヨト ニヨ

Theorem 16 (He–Peng–Tkachenko–Xiao, 2019)

Let $X = \{x_{\alpha} : \alpha < \mathfrak{c}\}\)$ *be a Hamel base for* $\mathbb R$ *over the field* $\mathbb Q$ *, where* $x_0 = 1$. Let *X* be the disjoint union of its proper subsets X_0 and X_1 and *we always assume that* $x_0 \in X_0$. Then

$$
M_i = \Big\{\sum_{j=1}^n q_j x_{\alpha_j} : q_j \in \mathbb{Q}, \ x_{\alpha_j} \in X_i \text{ for each } j = 1, \dots, n\Big\}
$$

is a dense subgroup of (\mathbb{R}, τ_u) *for* $i = 0, 1$ *and* $\mathbb{R} = M_0 \oplus M_1$ *. For every* $q \in M_0$, let

$$
U_q = \{p + m : p > q, \ p \in M_0, \ m \in M_1\}.
$$

Then the family

$$
\mathcal{F} = \{ (-1/n, 1/n) \cap U_{-1/n} : n \in \mathbb{N}^+ \}
$$

is a local base at zero for a paratopological group topology σ *on* R *which is a successor of* τ_n *in the lattice* $PG(\mathbb{R})$ [.](#page-14-0)
Zhigiang Xiao (TU) **c**aos in the lattices of topological group tor

Gaps in the lattices of topological group topol **July 26, 2021** 16/19

Suppose $\{\tau_u, \sigma\}$ is a gap in $PG(\mathbb{R})$ with countable character at 0 of (\mathbb{R}, σ) . We assume that $\{U_n : n \in \mathbb{N}\}\$ is a neighbourhood base at 0 of (R, σ) with the following condition $U_n \subseteq (-1/n, 1/n)$ and $U_n + U_n \subseteq U_{n+1}$ for each $n \in \mathbb{N}$. Hence the constructions given in Proposition 4 and Theorem 16 satisfy the above's conditions. Then the exponential map will induce a paratopological group topologies on \mathbb{R}^+ if $\mathbb R$ endowed with the paratopological group topology σ . And the pair $\{\exp(\tau_u), \exp(\sigma)\}$ also forms a gap in $\mathcal{PG}(\mathbb{R}^+)$ since exponential map is an isomorphism.

Example 17

paratopological group topology τ on X whose base at the identity *I* of X Let *X* be the subgroup of $GL(2,\mathbb{R})$ which consists of all matrices $\left(\begin{smallmatrix} a & b \ 0 & 1 \end{smallmatrix}\right)$, where $a > 0$ and $b \in \mathbb{R}$ is arbitrary. There exists a Hausdorff is formed by the sets

$$
W_n = \{ (a b) : a \in \exp(U_n), \ |b| < 1/n \},\
$$

with $n \in \mathbb{N}^+$. And $\{\tau_X, \tau\}$ is a gap in the sup semilattice of Hausdorff paratopological group topologies on *X*.

References

A.V. Arhangel'skii, M.G. Tkachenko, Topological Groups and Related Structures, World Scientific, Singapore, 2008.

Aleksander Blaszczyk, M. Tkachenko, Transversal, T₁-independent, and *T*1-complementary topologies, *Topol. Appl.* **230** (2017), 308-337.

W. He, D. Peng, M. Tkachenko, Z. Xiao, Gaps in lattices of (para)topological group topologies and cardinal functions, *Topol. Appl.*, **264** (2019), 89–104.

D. Peng, W. He, M. Tkachenko, Z. Xiao, Successors of locally compact topological group topologies on abelian groups, *Fundamenta Math*, accepted. .

A.A. Klyachko, A.Yu. Olshanskii, D.V. Osin, On topologizable and non-topologizable groups, *Topol. Appl.* **160** (16) (2013), 2104-2120.

Z. Xiao, D. Peng, W. He, Predecessors and Successors of the Euclidean topology on a subgroup of *GL*(2, R), *Topol. Appl.*, accepted. 4 ロ ト ィ *同* ト ィ ヨ ト QQ

Thank you!

重

 299

イロトメ 倒 トメ 差 トメ 差