# Gaps in the lattices of topological group topologies

Zhiqiang Xiao Taizhou University

Joint work with: Wei He, Dekui Peng, Mikhail Tkachenko

YGGT X Newcastle, July 26, 2021

Zhiqiang Xiao (TU)

Gaps in the lattices of topological group topo

July 26, 2021 1 / 19

• • • • • • • • • • • • •





- Predecessors of locally compact abelian group  $(G, \tau)$  in  $\mathcal{PG}(G)$  and  $\mathcal{G}(G)$
- 3 successors of locally compact abelian group  $(G, \tau)$  in  $\mathcal{PG}(G)$  and  $\mathcal{G}(G)$

• • • • • • • • • • • •

The study of lattices of topologies over a set was initiated by Birkhoff around 1930s. From then on, there are a lot of study in this direction. Let  $\mathcal{L}(X) = (\mathcal{T}(X), \wedge, \vee)$  be the lattice of all topologies on a set X, where the binary operations  $\vee$  and  $\wedge$  are called the *join* and *meet*, respectively. As usual, the join  $\tau \vee \sigma$  of topologies  $\tau, \sigma \in \mathcal{T}(X)$  is the coarsest topology  $\lambda$  on X satisfying  $\tau \subset \lambda$  and  $\sigma \subset \lambda$ . Similarly,  $\tau \wedge \sigma$  is the finest topology  $\lambda^*$  on X satisfying  $\lambda^* \subset \tau$  and  $\lambda^* \subset \sigma$ . It is known and easy to verify that the lattice  $(\mathcal{T}(X), \wedge, \vee)$  is *complete*, and family  $\mathcal{L}_1(X)$  of  $T_1$  topologies on X forms a *sublattice* of  $\mathcal{T}(X)$ .

#### Theorem 1 (Birkhoff, 1935)

For every set X,  $\mathcal{L}(X)(\mathcal{L}_1(X))$  is a complete lattice.

・ロト ・ 四ト ・ ヨト ・ ヨト …

Our main concern is to study the lattices of (para)topological group topologies on a group G. From now on, we will fix

$$X=\{igl( egin{array}{c} a & b \ 0 & 1 \end{array} igr): a>0, a,b\in \mathbb{R}\}\leq GL(2,\mathbb{R}).$$

Let  $(\mathcal{PG}(G), \wedge, \vee)$  be the lattice of all paratopological group topologies on a group *G*, where the binary operations  $\vee$  and  $\wedge$  are called the *join* and *meet*, respectively. As usual, the join  $\tau \vee \sigma$  of topologies  $\tau, \sigma \in \mathcal{PG}(G)$  is the coarsest paratopological group topology  $\lambda$  on *G* satisfying  $\tau \subset \lambda$  and  $\sigma \subset \lambda$ . Similarly,  $\tau \wedge \sigma$  is the finest paratopological group topology  $\lambda^*$  on *G* satisfying  $\lambda^* \subset \tau$  and  $\lambda^* \subset \sigma$ . It is known and easy to verify that the lattice  $(\mathcal{PG}(G), \wedge, \vee)$  is *complete*, and family  $\mathcal{G}(G)$  of topological group topologies on *G* forms a *sublattice* of  $\mathcal{PG}(G)$ .

## **Definition 2**

Let *G* be an abstract group and *S* be a subfamily of the lattice  $\mathcal{PG}(G)$  of all paratopological group topologies on *G*. A pair of elements  $\tau, \sigma \in S$  with  $\sigma \subsetneq \tau$  is a *gap* in *S* if no element  $\lambda \in S$  satisfies  $\sigma \subsetneq \lambda \subsetneq \tau$ . If  $\{\sigma, \tau\}$  is a gap in *S*, and  $\sigma \subseteq \tau$ , then  $\tau$  is called a *successor* of  $\sigma$  in *S* and  $\sigma$  is a *predecessor* of  $\tau$  in *S*.

Let  $\mathcal{T}$  be a nondiscrete (para)topological group topology on the additive group of integers,  $\mathbb{Z}$ . By the Kuratowski–Zorn lemma,  $\mathcal{T}$  is contained in a *maximal* (by inclusion) nondiscrete (para)topological group topology on  $\mathbb{Z}$ , say,  $\mathcal{T}^*$ . In what follows the term *maximal* topology will always refer to a non-discrete topology. Therefore  $\{\mathcal{T}^*, \tau_d\}$  is a *gap* in  $\mathcal{PG}(\mathbb{Z})$ .

We now use maximal topologies to define predecessors of  $\tau_u$  in  $\mathcal{G}(\mathbb{R})$  and  $\mathcal{PG}(\mathbb{R})$ .

### Example 3 (He-Peng-Tkachenko-Xiao, 2019)

Let  $\mathcal{T}^*$  be a maximal (para)topological group topology on  $\mathbb{Z}$  and  $\mathcal{T}^*(0)$  be the family of all sets  $U \in \mathcal{T}^*$  with  $0 \in U$ . Then the family

$$\mathcal{B} = \{ U + (-\varepsilon, \varepsilon) : U \in \mathcal{T}^*(0), \ \varepsilon > 0 \}$$

is a local base at zero for a (para)topological group topology  $\tau$  on  $\mathbb{R}$  and  $\tau$  is a predecessor of  $\tau_u$  in  $\mathcal{G}(\mathbb{R})$  (respectively, in  $\mathcal{PG}(\mathbb{R})$ ).

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

## Theorem 4 (He–Peng–Tkachenko–Xiao, 2019)

Let  $\sigma$  be a predecessor of  $\tau_u$  in  $\mathcal{G}(\mathbb{R})$  (in  $\mathcal{PG}(\mathbb{R})$ ). Then  $\sigma \upharpoonright \mathbb{Z}$  is a maximal (para)topological group topology on  $\mathbb{Z}$ .

Combining Example 3 and Theorem 4 we obtain a complete description of the predecessors of  $\tau_u$  in the lattices  $\mathcal{G}(\mathbb{R})$  and  $\mathcal{PG}(\mathbb{R})$ . In fact, the operations on topologies described in Example 3 and Theorem 4 are mutually inverse. In other words, if  $\sigma$  is a predecessor of  $\tau_u$  in  $\mathcal{G}(\mathbb{R})$  or  $\mathcal{PG}(\mathbb{R})$  and  $\mathcal{T} = \sigma \upharpoonright \mathbb{Z}$ , then  $\mathcal{T}$  is a maximal (para)topological group topology on  $\mathbb{Z}$  and the family  $\{U + (-\varepsilon, \varepsilon) : 0 \in U \in \mathcal{T}, \varepsilon > 0\}$  is a local base at zero for the topology  $\sigma$ .

< 日 > < 同 > < 回 > < 回 > < □ > <

Let us show that all predecessors of the topology  $\tau_u$  'inherit' the Hausdorff separation property, independently of whether they are taken in  $\mathcal{G}(\mathbb{R})$  or in  $\mathcal{PG}(\mathbb{R})$ .

Proposition 1 (He–Peng–Tkachenko–Xiao, 2019)

If  $\sigma$  is a predecessor of  $\tau_u$  either in  $\mathcal{G}(\mathbb{R})$  or  $\mathcal{PG}(\mathbb{R})$ , then the topology  $\sigma$  is Hausdorff.

## Theorem 5

Let  $(G, \tau)$  be a Hausdorff topological abelian group. Then all predecessors of  $\tau$  in  $\mathcal{G}(G)$  (if exist) are Hausdorff if and only if the group *G* is torsion free.

Let us recall that a Hausdorff topological group G is *minimal* if it does not admit a strictly coarser Hausdorff topological group topology. Theorem 5 implies the following curious fact about minimal topological abelian groups.

#### Corollary 6

Let  $(G, \tau)$  be a minimal topological abelian group. If *G* is torsion free, then  $\tau$  has no predecessors in  $\mathcal{G}(G)$ .

In [4], we have proved that a minimal abelian torsion-free group *G* have no predecessors in  $\mathcal{G}(G)$ . But we obtain the opposite result for the group *X*.

Example 7

Let  $\mathcal{U}$  be the family of subsets of X of the form

$$W_n = \{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \in X : a \in (1 - 1/n, 1 + 1/n), \ b \in \mathbb{R}, \},$$

where  $n \in \mathbb{N}^+$ . Then there exists a topological group topology  $\mathcal{T}_{\mathcal{U}}$  on X with local base  $\mathcal{U}$  at the identity I of X. The topology  $\mathcal{T}_{\mathcal{U}}$  is strictly coarser than the Euclidean topology of the group X and  $\mathcal{T}_{\mathcal{U}}$  is the unique predecessor of  $\tau_X$  in  $\mathcal{G}(X)$ .

## Problem 8

Does every locally compact noncompact minimal Hausdorff group admit a strictly weaker (minimal) Hausdorff paratopological group topology?

#### Remark 1

In fact, these groups are locally compact noncompact minimal group when endowed with the discrete topology. Then the natural question as to whether every infinite non-topologizable group admits a non-discrete Hausdorff (minimal) paratopological group topology is a special case of Problem 8.

### Problem 9

Does every infinite non-topologizable group admit a non-discrete Hausdorff (minimal) paratopological group topology?

#### Proposition 2 (He–Peng–Tkachenko–Xiao, 2019)

Let  $\{\tau_1, \tau_2\}$  be a gap in the lattice of all (para)topological group topologies on a group *G*. If *H* is a central group of *G*, then either  $\tau_1 | H = \tau_2 | H$  or  $\{\tau_1 | H, \tau_2 | H\}$  is a gap in the lattice of (para)topological group topologies on *H*. Further, if  $q: G \to K$  is a surjective homomorphism of groups and  $q(\tau_i) = \{q(U) : U \in \tau_i\}$  for i = 1, 2, then  $\{q(\tau_1), q(\tau_2)\}$  is a gap in the lattice of (para)topological group topologies on *K* provided that  $q(\tau_1) \neq q(\tau_2)$ .

### **Proposition 3**

The gaps in the lattice of topological group topologies over the group *X* is not preserved by taking normal subgroups.

## Theorem 10

Let *N* be a complete subgroup of a Hausdorff topological abelian group *G* with topology  $\tau$  such that the quotient group *G*/*N* is compact. Then there exists a one-to-one correspondence between the predecessors,  $\mathcal{P}_2(\tau)$ , of  $\tau$  in  $\mathcal{G}_2(G)$  and the predecessors,  $\mathcal{P}_2(\tau \upharpoonright N)$ , of  $\tau \upharpoonright N$  in  $\mathcal{G}_2(N)$ . This correspondence is the restriction mapping  $\sigma \mapsto \sigma \upharpoonright N$ , where  $\sigma \in \mathcal{P}_2(\tau)$ .

Let  $G = \mathbb{R}$  and  $N = \mathbb{Z}$ . The cardinality of the family  $\mathcal{P}_2(\tau)$  of predecessors of  $\tau_u$  in  $\mathcal{G}_2(\mathbb{R})$  is equal to the cardinality of the family of all maximal topological group topologies on  $\mathbb{Z}$ . The latter number is  $2^c$ . Since every predecessor of  $\tau_u$  in  $\mathcal{G}(\mathbb{R})$  is a Hausdorff topology, we have the following result.

## Corollary 11

The usual interval topology  $\tau_u$  on the additive group of reals has exactly  $2^c$  predecessors in the lattice  $\mathcal{G}(\mathbb{R})$ .

## Theorem 12 (He–Peng–Tkachenko–Xiao, 2019)

A compact Hausdorff topological group topology  $\tau$  on a divisible abelian group G has no successors in  $\mathcal{G}(G)$ .

## Corollary 13

For any positive integer *n*, the usual Euclidean topology of  $\mathbb{R}^n$  does not have successors in  $\mathcal{G}(\mathbb{R}^n)$ .

Theorem 14

The Euclidean topology  $\tau_X$  on X has no successors in  $\mathcal{G}(X)$ .

## Theorem 15

Let  $(G, \tau)$  be a connected LCA group. Then  $\tau$  has no successors in  $\mathcal{G}(G)$ .

### Proposition 4 (He–Peng–Tkachenko–Xiao, 2019)

For every integer  $n \ge 0$ , the pair  $\{\tau_u^{n+1}, \tau_u^n \times \tau_s\}$  is a gap in  $\mathcal{PG}(\mathbb{R}^{n+1})$ , where  $\tau_u^k$  is the usual Euclidean topology on  $\mathbb{R}^k$  for  $k \in \{n, n+1\}$  and  $\tau_u^n \times \tau_s$  is the topology of  $(\mathbb{R}^n, \tau_u^n) \times (\mathbb{R}, \tau_s)$ .

#### Theorem 16 (He–Peng–Tkachenko–Xiao, 2019)

Let  $X = \{x_{\alpha} : \alpha < \mathfrak{c}\}$  be a Hamel base for  $\mathbb{R}$  over the field  $\mathbb{Q}$ , where  $x_0 = 1$ . Let X be the disjoint union of its proper subsets  $X_0$  and  $X_1$  and we always assume that  $x_0 \in X_0$ . Then

$$M_i = \left\{ \sum_{j=1}^n q_j x_{\alpha_j} : q_j \in \mathbb{Q}, \ x_{\alpha_j} \in X_i \text{ for each } j = 1, \dots, n \right\}$$

is a dense subgroup of  $(\mathbb{R}, \tau_u)$  for i = 0, 1 and  $\mathbb{R} = M_0 \oplus M_1$ . For every  $q \in M_0$ , let

$$U_q = \{p + m : p > q, p \in M_0, m \in M_1\}.$$

Then the family

$$\mathcal{F} = \{(-1/n, 1/n) \cap U_{-1/n} : n \in \mathbb{N}^+\}$$

is a local base at zero for a paratopological group topology  $\sigma$  on  $\mathbb{R}$  which is a successor of  $\tau_{\mu}$  in the lattice  $\mathcal{PG}(\mathbb{R})$ .

Zhiqiang Xiao (TU)

Gaps in the lattices of topological group topol

Suppose  $\{\tau_u, \sigma\}$  is a gap in  $\mathcal{PG}(\mathbb{R})$  with countable character at 0 of  $(\mathbb{R}, \sigma)$ . We assume that  $\{U_n : n \in \mathbb{N}\}$  is a neighbourhood base at 0 of  $(\mathbb{R}, \sigma)$  with the following condition  $U_n \subseteq (-1/n, 1/n)$  and  $U_n + U_n \subseteq U_{n+1}$  for each  $n \in \mathbb{N}$ . Hence the constructions given in Proposition 4 and Theorem 16 satisfy the above's conditions. Then the exponential map will induce a paratopological group topologies on  $\mathbb{R}^+$  if  $\mathbb{R}$  endowed with the paratopological group topology  $\sigma$ . And the pair  $\{\exp(\tau_u), \exp(\sigma)\}$  also forms a gap in  $\mathcal{PG}(\mathbb{R}^+)$  since exponential map is an isomorphism.

#### Example 17

Let *X* be the subgroup of  $GL(2, \mathbb{R})$  which consists of all matrices  $\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$ , where a > 0 and  $b \in \mathbb{R}$  is arbitrary. There exists a Hausdorff paratopological group topology  $\tau$  on *X* whose base at the identity *I* of *X* is formed by the sets

$$W_n = \left\{ \left(\begin{smallmatrix} a & b \\ 0 & 1 \end{smallmatrix}\right) : a \in \exp(U_n), \ |b| < 1/n \right\},$$

with  $n \in \mathbb{N}^+$ . And  $\{\tau_X, \tau\}$  is a gap in the sup semilattice of Hausdorff paratopological group topologies on *X*.

Zhiqiang Xiao (TU)

# References



A.V. Arhangel'skii, M.G. Tkachenko, Topological Groups and Related Structures, World Scientific, Singapore, 2008.



Aleksander Blaszczyk, M. Tkachenko, Transversal, *T*<sub>1</sub>-independent, and *T*<sub>1</sub>-complementary topologies, *Topol. Appl.* **230** (2017), 308-337.



W. He, D. Peng, M. Tkachenko, Z. Xiao, Gaps in lattices of (para)topological group topologies and cardinal functions, *Topol. Appl.*, **264** (2019), 89–104.



D. Peng, W. He, M. Tkachenko, Z. Xiao, Successors of locally compact topological group topologies on abelian groups, *Fundamenta Math*, accepted. .



- A.A. Klyachko, A.Yu. Olshanskii, D.V. Osin, On topologizable and non-topologizable groups, *Topol. Appl.* **160** (16) (2013), 2104-2120.
- A. A. Markov, Three Papers on Topological Groups: I. On the Existence of Periodic Connected Topological Groups. II. On Free Topological Groups. III. On Unconditionally Closed Sets, *Am. Math. Soc. Transl.* **30** (1950).



Z. Xiao, D. Peng, W. He, Predecessors and Successors of the Euclidean topology on a subgroup of  $GL(2, \mathbb{R})$ , *Topol. Appl.*, accepted.

# Thank you!

Zhiqiang Xiao (TU)

Gaps in the lattices of topological group topo

July 26, 2021 19 / 19

æ

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))